Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parikh-reducing Church-Rosser representations for some classes of regular languages (1703.10056v1)

Published 29 Mar 2017 in cs.FL

Abstract: In this paper the concept of Parikh-reducing Church-Rosser systems is studied. It is shown that for two classes of regular languages there exist such systems which describe the languages using finitely many equivalence classes of the rewriting system. The two classes are: 1.) the class of all regular languages such that the syntactic monoid contains only abelian groups and 2.) the class of all group languages over a two-letter alphabet. The construction of the systems yield a monoid representation such that all subgroups are abelian. Additionally, the complexity of those representations is studied.

Summary

We haven't generated a summary for this paper yet.