Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Factoring Exogenous State for Model-Free Monte Carlo (1703.09390v2)

Published 28 Mar 2017 in cs.LG and stat.ML

Abstract: Policy analysts wish to visualize a range of policies for large simulator-defined Markov Decision Processes (MDPs). One visualization approach is to invoke the simulator to generate on-policy trajectories and then visualize those trajectories. When the simulator is expensive, this is not practical, and some method is required for generating trajectories for new policies without invoking the simulator. The method of Model-Free Monte Carlo (MFMC) can do this by stitching together state transitions for a new policy based on previously-sampled trajectories from other policies. This "off-policy Monte Carlo simulation" method works well when the state space has low dimension but fails as the dimension grows. This paper describes a method for factoring out some of the state and action variables so that MFMC can work in high-dimensional MDPs. The new method, MFMCi, is evaluated on a very challenging wildfire management MDP.

Citations (5)

Summary

We haven't generated a summary for this paper yet.