Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing independence with high-dimensional correlated samples (1703.08843v1)

Published 26 Mar 2017 in math.ST and stat.TH

Abstract: Testing independence among a number of (ultra) high-dimensional random samples is a fundamental and challenging problem. By arranging $n$ identically distributed $p$-dimensional random vectors into a $p \times n$ data matrix, we investigate the problem of testing independence among columns under the matrix-variate normal modeling of data. We propose a computationally simple and tuning-free test statistic, characterize its limiting null distribution, analyze the statistical power and prove its minimax optimality. As an important by-product of the test statistic, a ratio-consistent estimator for the quadratic functional of a covariance matrix from correlated samples is developed. We further study the effect of correlation among samples to an important high-dimensional inference problem --- large-scale multiple testing of Pearson's correlation coefficients. Indeed, blindly using classical inference results based on the assumed independence of samples will lead to many false discoveries, which suggests the need for conducting independence testing before applying existing methods. To address the challenge arising from correlation among samples, we propose a "sandwich estimator" of Pearson's correlation coefficient by de-correlating the samples. Based on this approach, the resulting multiple testing procedure asymptotically controls the overall false discovery rate at the nominal level while maintaining good statistical power. Both simulated and real data experiments are carried out to demonstrate the advantages of the proposed methods.

Summary

We haven't generated a summary for this paper yet.