Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Token-based Function Computation with Memory (1703.08831v1)

Published 26 Mar 2017 in cs.DC and stat.ML

Abstract: In distributed function computation, each node has an initial value and the goal is to compute a function of these values in a distributed manner. In this paper, we propose a novel token-based approach to compute a wide class of target functions to which we refer as "Token-based function Computation with Memory" (TCM) algorithm. In this approach, node values are attached to tokens and travel across the network. Each pair of travelling tokens would coalesce when they meet, forming a token with a new value as a function of the original token values. In contrast to the Coalescing Random Walk (CRW) algorithm, where token movement is governed by random walk, meeting of tokens in our scheme is accelerated by adopting a novel chasing mechanism. We proved that, compared to the CRW algorithm, the TCM algorithm results in a reduction of time complexity by a factor of at least $\sqrt{n/\log(n)}$ in Erd\"os-Renyi and complete graphs, and by a factor of $\log(n)/\log(\log(n))$ in torus networks. Simulation results show that there is at least a constant factor improvement in the message complexity of TCM algorithm in all considered topologies. Robustness of the CRW and TCM algorithms in the presence of node failure is analyzed. We show that their robustness can be improved by running multiple instances of the algorithms in parallel.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.