Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the coefficients of symmetric power $L$-functions (1703.08344v3)

Published 24 Mar 2017 in math.NT

Abstract: We study the signs of the Fourier coefficients of a newform. Let $f$ be a normalized newform of weight $k$ for $\Gamma_0(N)$. Let $a_f(n)$ be the $n$th Fourier coefficient of $f$. For any fixed positive integer $m$, we study the distribution of the signs of ${a_f(pm)}_p$, where $p$ runs over all prime numbers. We also find out the abscissas of absolute convergence of two Dirichlet series with coefficients involving the Fourier coefficients of cusp forms and the coefficients of symmetric power $L$-functions.

Summary

We haven't generated a summary for this paper yet.