Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Adversarial Residual Pairwise Networks for One Shot Learning (1703.08033v1)

Published 23 Mar 2017 in cs.CV and cs.NE

Abstract: Deep neural networks achieve unprecedented performance levels over many tasks and scale well with large quantities of data, but performance in the low-data regime and tasks like one shot learning still lags behind. While recent work suggests many hypotheses from better optimization to more complicated network structures, in this work we hypothesize that having a learnable and more expressive similarity objective is an essential missing component. Towards overcoming that, we propose a network design inspired by deep residual networks that allows the efficient computation of this more expressive pairwise similarity objective. Further, we argue that regularization is key in learning with small amounts of data, and propose an additional generator network based on the Generative Adversarial Networks where the discriminator is our residual pairwise network. This provides a strong regularizer by leveraging the generated data samples. The proposed model can generate plausible variations of exemplars over unseen classes and outperforms strong discriminative baselines for few shot classification tasks. Notably, our residual pairwise network design outperforms previous state-of-theart on the challenging mini-Imagenet dataset for one shot learning by getting over 55% accuracy for the 5-way classification task over unseen classes.

Citations (108)

Summary

We haven't generated a summary for this paper yet.