Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Hilbert coefficients, depth of associated graded rings and reduction numbers (1703.07961v3)

Published 23 Mar 2017 in math.AC

Abstract: Let $(R,\mathfrak{m})$ be a $d$-dimensional Cohen-Macaulay local ring, $I$ an $\mathfrak{m}$-primary ideal of $R$ and $J=(x_1,...,x_d)$ a minimal reduction of $I$. We show that if $J_{d-1}=(x_1,...,x_{d-1})$ and $\sum\limits_{n=1}\infty\lambda{({I{n+1}\cap J_{d-1}})/({J{In} \cap J_{d-1}})=i}$ where i=0,1, then depth $G(I)\geq{d-i-1}$. Moreover, we prove that if $e_2(I) = \sum_{n=2}\infty (n-1) \lambda (In/JI{n-1})-2;$ or if $I$ is integrally closed and $e_2(I) = \sum_{n=2}\infty (n-1)\lambda({{I{n}}}/JI{n-1})-i$ where $i=3,4$, then $e_1(I) = \sum_{n=1}\infty \lambda(In / JI{n-1})-1.$ In addition, we show that $r(I)$ is independent. Furthermore, we study the independence of $r(I)$ with some other conditions.

Summary

We haven't generated a summary for this paper yet.