Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative homogenization in nonlinear elasticity for small loads (1703.07947v1)

Published 23 Mar 2017 in math.AP

Abstract: We study quantitative periodic homogenization of integral functionals in the context of non-linear elasticity. Under suitable assumptions on the energy densities (in particular frame indifference; minimality, non-degeneracy and smoothness at the identity; $p\geq d$-growth from below; and regularity of the microstructure), we show that in a neighborhood of the set of rotations, the multi-cell homogenization formula of non-convex homogenization reduces to a single-cell formula. The latter can be expressed with help of correctors. We prove that the homogenized integrand admits a quadratic Taylor expansion in an open neighborhood of the rotations -- a result that can be interpreted as the fact that homogenization and linearization commute close to the rotations. Moreover, for small applied loads, we provide an estimate on the homogenization error in terms of a quantitative two-scale expansion.

Summary

We haven't generated a summary for this paper yet.