A fractional Kirchhoff problem involving a singular term and a critical nonlinearity (1703.07861v1)
Abstract: In this paper we consider the following critical nonlocal problem $$ \left{\begin{array}{ll} M\left(\displaystyle\iint_{\mathbb{R}{2N}}\frac{|u(x)-u(y)|2}{|x-y|{N+2s}}dxdy\right)(-\Delta)s u = \displaystyle\frac{\lambda}{u\gamma}+u{2*_s-1}&\quad\mbox{in } \Omega,\ u>0&\quad\mbox{in } \Omega,\ u=0&\quad\mbox{in } \mathbb{R}N\setminus\Omega, \end{array}\right. $$ where $\Omega$ is an open bounded subset of $\mathbb RN$ with continuous boundary, dimension $N>2s$ with parameter $s\in (0,1)$, $2*_s=2N/(N-2s)$ is the fractional critical Sobolev exponent, $\lambda>0$ is a real parameter, exponent $\gamma\in(0,1)$, $M$ models a Kirchhoff type coefficient, while $(-\Delta)s$ is the fractional Laplace operator. In particular, we cover the delicate degenerate case, that is when the Kirchhoff function $M$ is zero at zero. By combining variational methods with an appropriate truncation argument, we provide the existence of two solutions.