Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Based Source Code Classification Using Syntax Oriented Features (1703.07638v1)

Published 4 Mar 2017 in cs.LG and cs.PL

Abstract: As of today the programming language of the vast majority of the published source code is manually specified or programmatically assigned based on the sole file extension. In this paper we show that the source code programming language identification task can be fully automated using machine learning techniques. We first define the criteria that a production-level automatic programming language identification solution should meet. Our criteria include accuracy, programming language coverage, extensibility and performance. We then describe our approach: How training files are preprocessed for extracting features that mimic grammar productions, and then how these extracted grammar productions are used for the training and testing of our classifier. We achieve a 99 percent accuracy rate while classifying 29 of the most popular programming languages with a Maximum Entropy classifier.

Citations (7)

Summary

We haven't generated a summary for this paper yet.