Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Tropical Superpotential For $\mathbb{P}^2$

Published 22 Mar 2017 in math.AG and math.CO | (1703.07620v2)

Abstract: We present an extended worked example of the computation of the tropical superpotential considered by Carl--Pumperla--Siebert. In particular we consider an affine manifold associated to the complement of a non-singular genus one plane curve, and calculate the wall and chamber decomposition determined by the Gross--Siebert algorithm. Using the results of Carl--Pumperla--Siebert we determine the tropical superpotential, via broken line counts, in every chamber of this decomposition. The superpotential defines a Laurent polynomial in every chamber, which we demonstrate to be identical to the Laurent polynomials predicted by Coates--Corti--Galkin--Golyshev--Kaspzryk to be mirror to $\mathbb{P}2$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.