Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pointwise Equidistribution and Translates of Measures on Homogeneous Spaces (1703.07224v2)

Published 21 Mar 2017 in math.DS

Abstract: Let $(X,\mathfrak{B},\mu)$ be a Borel probability space. Let $T_n: X\rightarrow X$ be a sequence of continuous transformations on $X$. Let $\nu$ be a probability measure on $X$ such that $\frac{1}{N}\sum_{n=1}N (T_n)\ast \nu \rightarrow \mu$ in the weak-$\ast$ topology. Under general conditions, we show that for $\nu$ almost every $x\in X$, the measures $\frac{1}{N}\sum{n=1}N \delta_{T_n x}$ get equidistributed towards $\mu$ if $N$ is restricted to a set of full upper density. We present applications of these results to translates of closed orbits of Lie groups on homogeneous spaces. As a corollary, we prove equidistribution of exponentially sparse orbits of the horocycle flow on quotients of $SL(2,\mathbb{R})$, starting from every point in almost every direction.

Summary

We haven't generated a summary for this paper yet.