Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paper2vec: Citation-Context Based Document Distributed Representation for Scholar Recommendation (1703.06587v1)

Published 20 Mar 2017 in cs.IR

Abstract: Due to the availability of references of research papers and the rich information contained in papers, various citation analysis approaches have been proposed to identify similar documents for scholar recommendation. Despite of the success of previous approaches, they are, however, based on co-occurrence of items. Once there are no co-occurrence items available in documents, they will not work well. Inspired by distributed representations of words in the literature of natural language processing, we propose a novel approach to measuring the similarity of papers based on distributed representations learned from the citation context of papers. We view the set of papers as the vocabulary, define the weighted citation context of papers, and convert it to weight matrix similar to the word-word cooccurrence matrix in natural language processing. After that we explore a variant of matrix factorization approach to train distributed representations of papers on the matrix, and leverage the distributed representations to measure similarities of papers. In the experiment, we exhibit that our approach outperforms state-of-theart citation-based approaches by 25%, and better than other distributed representation based methods.

Citations (21)

Summary

We haven't generated a summary for this paper yet.