Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminative Distance-Based Network Indices with Application to Link Prediction (1703.06227v3)

Published 18 Mar 2017 in cs.DS and cs.SI

Abstract: In large networks, using the length of shortest paths as the distance measure has shortcomings. A well-studied shortcoming is that extending it to disconnected graphs and directed graphs is controversial. The second shortcoming is that a huge number of vertices may have exactly the same score. The third shortcoming is that in many applications, the distance between two vertices not only depends on the length of shortest paths, but also on the number of shortest paths. In this paper, first we develop a new distance measure between vertices of a graph that yields discriminative distance-based centrality indices. This measure is proportional to the length of shortest paths and inversely proportional to the number of shortest paths. We present algorithms for exact computation of the proposed discriminative indices. Second, we develop randomized algorithms that precisely estimate average discriminative path length and average discriminative eccentricity and show that they give $(\epsilon,\delta)$-approximations of these indices. Third, we perform extensive experiments over several real-world networks from different domains. In our experiments, we first show that compared to the traditional indices, discriminative indices have usually much more discriminability. Then, we show that our randomized algorithms can very precisely estimate average discriminative path length and average discriminative eccentricity, using only few samples. Then, we show that real-world networks have usually a tiny average discriminative path length, bounded by a constant (e.g., 2). Fourth, in order to better motivate the usefulness of our proposed distance measure, we present a novel link prediction method, that uses discriminative distance to decide which vertices are more likely to form a link in future, and show its superior performance compared to the well-known existing measures.

Summary

We haven't generated a summary for this paper yet.