Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Efficient Precoding C-RAN Downlink with Compression at Fronthaul (1703.05996v1)

Published 17 Mar 2017 in cs.IT and math.IT

Abstract: This paper considers a downlink transmission of cloud radio access network (C-RAN) in which precoded baseband signals at a common baseband unit are compressed before being forwarded to radio units (RUs) through limited fronthaul capacity links. We investigate the joint design of precoding, multivariate compression and RU-user selection which maximizes the energy efficiency of downlink C-RAN networks. The considered problem is inherently a rank-constrained mixed Boolean nonconvex program for which a globally optimal solution is difficult and computationally expensive to find. In order to derive practically appealing solutions, we invoke some useful relaxation and transformation techniques to arrive at a more tractable (but still nonconvex) continuous program. To solve the relaxation problem, we propose an iterative procedure based on DC algorithms which is provably convergent. Numerical results demonstrate the superior of the proposed solution in terms of achievable energy efficiency compared to existing schemes.

Citations (12)

Summary

We haven't generated a summary for this paper yet.