Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modulo $p$ representations of reductive $p$-adic groups: functorial properties (1703.05599v2)

Published 16 Mar 2017 in math.NT and math.RT

Abstract: Let $F$ be a local field with residue characteristic $p$, let $C$ be an algebraically closed field of characteristic $p$, and let $\mathbf{G}$ be a connected reductive $F$-group. In a previous paper, Florian Herzig and the authors classified irreducible admissible $C$-representations of $G=\mathbf{G}(F)$ in terms of supercuspidal representations of Levi subgroups of $G$. Here, for a parabolic subgroup $P$ of $G$ with Levi subgroup $M$ and an irreducible admissible $C$-representation $\tau$ of $M$, we determine the lattice of subrepresentations of $\mathrm{Ind}PG \tau$ and we show that $\mathrm{Ind}_PG \chi \tau$ is irreducible for a general unramified character $\chi$ of $M$. In the reverse direction, we compute the image by the two adjoints of $\mathrm{Ind}_PG$ of an irreducible admissible representation $\pi$ of $G$. On the way, we prove that the right adjoint of $\mathrm{Ind}_PG $ respects admissibility, hence coincides with Emerton's ordinary part functor $\mathrm{Ord}{\overline{P}}G$ on admissible representations.

Summary

We haven't generated a summary for this paper yet.