Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpolation between $H^{p(\cdot)}(\mathbb R^n)$ and $L^\infty(\mathbb R^n)$: Real Method (1703.05527v1)

Published 16 Mar 2017 in math.CA and math.FA

Abstract: Let $p(\cdot):\ \mathbb Rn\to(0,\infty)$ be a variable exponent function satisfying the globally log-H\"older continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into "good" and "bad" parts and then prove the following real interpolation theorem between the variable Hardy space $H{p(\cdot)}(\mathbb Rn)$ and the space $L{\infty}(\mathbb Rn)$: \begin{equation*} (H{p(\cdot)}(\mathbb Rn),L{\infty}(\mathbb Rn))_{\theta,\infty} =W!H{p(\cdot)/(1-\theta)}(\mathbb Rn),\quad \theta\in(0,1), \end{equation*} where $W!H{p(\cdot)/(1-\theta)}(\mathbb Rn)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H{p(\cdot)}(\mathbb Rn)$ with $p_-:=\mathop\mathrm{ess\,inf}_{x\in\rn}p(x)\in(1,\infty)$ is proved to coincide with the variable Lebesgue space $W!L{p(\cdot)}(\mathbb Rn)$.

Summary

We haven't generated a summary for this paper yet.