Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Unbiased and Efficient Class of LSH-Based Samplers and Estimators for Partition Function Computation in Log-Linear Models (1703.05160v1)

Published 15 Mar 2017 in stat.ML, cs.DB, cs.DS, and cs.LG

Abstract: Log-linear models are arguably the most successful class of graphical models for large-scale applications because of their simplicity and tractability. Learning and inference with these models require calculating the partition function, which is a major bottleneck and intractable for large state spaces. Importance Sampling (IS) and MCMC-based approaches are lucrative. However, the condition of having a "good" proposal distribution is often not satisfied in practice. In this paper, we add a new dimension to efficient estimation via sampling. We propose a new sampling scheme and an unbiased estimator that estimates the partition function accurately in sub-linear time. Our samples are generated in near-constant time using locality sensitive hashing (LSH), and so are correlated and unnormalized. We demonstrate the effectiveness of our proposed approach by comparing the accuracy and speed of estimating the partition function against other state-of-the-art estimation techniques including IS and the efficient variant of Gumbel-Max sampling. With our efficient sampling scheme, we accurately train real-world LLMs using only 1-2% of computations.

Citations (53)

Summary

We haven't generated a summary for this paper yet.