Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data Driven Approach for Compound Figure Separation Using Convolutional Neural Networks (1703.05105v2)

Published 15 Mar 2017 in cs.CV

Abstract: A key problem in automatic analysis and understanding of scientific papers is to extract semantic information from non-textual paper components like figures, diagrams, tables, etc. Much of this work requires a very first preprocessing step: decomposing compound multi-part figures into individual subfigures. Previous work in compound figure separation has been based on manually designed features and separation rules, which often fail for less common figure types and layouts. Moreover, few implementations for compound figure decomposition are publicly available. This paper proposes a data driven approach to separate compound figures using modern deep Convolutional Neural Networks (CNNs) to train the separator in an end-to-end manner. CNNs eliminate the need for manually designing features and separation rules, but require a large amount of annotated training data. We overcome this challenge using transfer learning as well as automatically synthesizing training exemplars. We evaluate our technique on the ImageCLEF Medical dataset, achieving 85.9% accuracy and outperforming previous techniques. We have released our implementation as an easy-to-use Python library, aiming to promote further research in scientific figure mining.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Satoshi Tsutsui (43 papers)
  2. David Crandall (54 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.