Papers
Topics
Authors
Recent
2000 character limit reached

Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems

Published 15 Mar 2017 in math.OC | (1703.05085v3)

Abstract: We consider the problem of approximating the reachable set of a discrete-time polynomial system from a semialgebraic set of initial conditions under general semialgebraic set constraints. Assuming inclusion in a given simple set like a box or an ellipsoid, we provide a method to compute certified outer approximations of the reachable set. The proposed method consists of building a hierarchy of relaxations for an infinite-dimensional moment problem. Under certain assumptions, the optimal value of this problem is the volume of the reachable set and the optimum solution is the restriction of the Lebesgue measure on this set. Then, one can outer approximate the reachable set as closely as desired with a hierarchy of super level sets of increasing degree polynomials. For each fixed degree, finding the coefficients of the polynomial boils down to computing the optimal solution of a convex semidefinite program. When the degree of the polynomial approximation tends to infinity, we provide strong convergence guarantees of the super level sets to the reachable set. We also present some application examples together with numerical results.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.