Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complete classification of pseudo $H$-type algebras: II (1703.04948v1)

Published 15 Mar 2017 in math.RT

Abstract: We classify a class of 2-step nilpotent Lie algebras related to the representations of the Clifford algebras in the following way. Let $J\colon \Cl(\mathbb R{r,s})\toU$ be a representation of the Clifford algebra $\Cl(\mathbb R{r,s})$ generated by the pseudo Euclidean vector space $\mathbb R{r,s}$. Assume that the Clifford module $U$ is endowed with a bilinear symmetric non-degenerate real form $\la\cdot\,,\cdot\ra_U$ making the linear map $J_z$ skew symmetric for any $z\in\mathbb R{r,s}$. The Lie algebras and the Clifford algebras are related by $\la J_zv,w\ra_U=\la z,[v,w]\ra_{\mathbb R{r,s}}$, $z\in \mathbb R{r,s}$, $v,w\in U$. We detect the isomorphic and non-isomorphic Lie algebras according to the dimension of $U$ and the range of the non-negative integers~$r,s$.

Summary

We haven't generated a summary for this paper yet.