Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Support Recovery of Jointly Sparse Gaussian Sources using Sparse Bayesian Learning (1703.04930v5)

Published 15 Mar 2017 in cs.IT and math.IT

Abstract: In this work, we provide non-asymptotic, probabilistic guarantees for successful recovery of the common nonzero support of jointly sparse Gaussian sources in the multiple measurement vector (MMV) problem. The support recovery problem is formulated as the marginalized maximum likelihood (or type-II ML) estimation of the variance hyperparameters of a joint sparsity inducing Gaussian prior on the source signals. We derive conditions under which the resulting nonconvex constrained optimization perfectly recovers the nonzero support of a joint-sparse Gaussian source ensemble with arbitrarily high probability. The support error probability decays exponentially with the number of MMVs at a rate that depends on the smallest restricted singular value and the nonnegative null space property of the self Khatri-Rao product of the sensing matrix. Our analysis confirms that nonzero supports of size as high as O($m2$) are recoverable from $m$ measurements per sparse vector. Our derived sufficient conditions for support consistency of the proposed constrained type-II ML solution also guarantee the support consistency of any global solution of the multiple sparse Bayesian learning (M-SBL) optimization whose nonzero coefficients lie inside a bounded interval. For the case of noiseless measurements, we further show that a single MMV is sufficient for perfect recovery of the $k$-sparse support by M-SBL, provided all subsets of $k + 1$ columns of the sensing matrix are linearly independent.

Citations (8)

Summary

We haven't generated a summary for this paper yet.