Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis (1703.04890v3)

Published 15 Mar 2017 in cs.LG, cs.NA, math.NA, math.OC, and stat.ML

Abstract: Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large, but finite number of loss functions. The present paper proposes a Riemannian stochastic quasi-Newton algorithm with variance reduction (R-SQN-VR). The key challenges of averaging, adding, and subtracting multiple gradients are addressed with notions of retraction and vector transport. We present convergence analyses of R-SQN-VR on both non-convex and retraction-convex functions under retraction and vector transport operators. The proposed algorithm is evaluated on the Karcher mean computation on the symmetric positive-definite manifold and the low-rank matrix completion on the Grassmann manifold. In all cases, the proposed algorithm outperforms the state-of-the-art Riemannian batch and stochastic gradient algorithms.

Citations (22)

Summary

We haven't generated a summary for this paper yet.