Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimization for L1-Norm Error Fitting via Data Aggregation

Published 15 Mar 2017 in stat.ML | (1703.04864v3)

Abstract: We propose a data aggregation-based algorithm with monotonic convergence to a global optimum for a generalized version of the L1-norm error fitting model with an assumption of the fitting function. The proposed algorithm generalizes the recent algorithm in the literature, aggregate and iterative disaggregate (AID), which selectively solves three specific L1-norm error fitting problems. With the proposed algorithm, any L1-norm error fitting model can be solved optimally if it follows the form of the L1-norm error fitting problem and if the fitting function satisfies the assumption. The proposed algorithm can also solve multi-dimensional fitting problems with arbitrary constraints on the fitting coefficients matrix. The generalized problem includes popular models such as regression and the orthogonal Procrustes problem. The results of the computational experiment show that the proposed algorithms are faster than the state-of-the-art benchmarks for L1-norm regression subset selection and L1-norm regression over a sphere. Further, the relative performance of the proposed algorithm improves as data size increases.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.