Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal selection of local approximants in RBF-PU interpolation (1703.04282v1)

Published 13 Mar 2017 in math.NA

Abstract: The Partition of Unity (PU) method, performed with local Radial Basis Function (RBF) approximants, has been proved to be an effective tool for solving large scattered data interpolation problems. However, in order to achieve a good accuracy, the question about how many points we have to consider on each local subdomain, i.e. how large can be the local data sets, needs to be answered. Moreover, it is well-known that also the shape parameter affects the accuracy of the local RBF approximants and, as a consequence, of the PU interpolant. Thus here, both the shape parameter used to fit the local problems and the size of the associated linear systems are supposed to vary among the subdomains. They are selected by minimizing an a priori error estimate. As evident from extensive numerical experiments and applications provided in the paper, the proposed method turns out to be extremely accurate also when data with non-homogeneous density are considered.

Summary

We haven't generated a summary for this paper yet.