Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An indefinite concave-convex equation under a Neumann boundary condition II (1703.04229v2)

Published 13 Mar 2017 in math.AP

Abstract: We proceed with the investigation of the problem $(P_\lambda): $ $-\Delta u = \lambda b(x)|u|{q-2}u +a(x)|u|{p-2}u \ \mbox{ in } \Omega, \ \ \frac{\partial u}{\partial \mathbf{n}} = 0 \ \mbox{ on } \partial \Omega$, where $\Omega$ is a bounded smooth domain in $\mathbb{R}N$ ($N \geq2$), $1<q<2<p$, $\lambda \in \mathbb{R}$, and $a,b \in C\alpha(\overline{\Omega})$ with $0<\alpha<1$. Dealing now with the case $b \geq 0$, $b \not \equiv 0$, we show the existence (and several properties) of a unbounded subcontinuum of nontrivial non-negative solutions of $(P_\lambda)$. Our approach is based on a priori bounds, a regularization procedure, and Whyburn's topological method.

Summary

We haven't generated a summary for this paper yet.