Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On finiteness properties of the Johnson filtrations (1703.04190v5)

Published 12 Mar 2017 in math.GR and math.GT

Abstract: Let A denote either the automorphism group of the free group of rank n>=4 or the mapping class group of an orientable surface of genus n>=12 with at most 1 boundary component, and let G be either the subgroup of IA-automorphisms or the Torelli subgroup of A, respectively. For a natural number N denote by G_N the Nth term of the lower central series of G. We prove that (i) any subgroup of G containing G,G is finitely generated; (ii) if N=2 or n>=8N-4 and K is any subgroup of G containing G_N (for instance, K can be the Nth term of the Johnson filtration of G), then G/[K,K] is nilpotent and hence the abelianization of K is finitely generated; (iii) if H is any finite index subgroup of A containing G_N, with N as in (ii), then H has finite abelianization.

Summary

We haven't generated a summary for this paper yet.