Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modular groups, Hurwitz classes and dynamic portraits of NET maps (1703.03983v1)

Published 11 Mar 2017 in math.DS

Abstract: An orientation-preserving branched covering $f: S2 \to S2$ is a nearly Euclidean Thurston (NET) map if each critical point is simple and its postcritical set has exactly four points. Inspired by classical, non-dynamical notions such as Hurwitz equivalence of branched covers of surfaces, we develop invariants for such maps. We then apply these notions to the classification and enumeration of NET maps. As an application, we obtain a complete classification of the dynamic critical orbit portraits of NET maps.

Summary

We haven't generated a summary for this paper yet.