Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Expression For The Argument of $ζ$ at Zeros on the Critical Line (1703.03490v2)

Published 9 Mar 2017 in math.NT

Abstract: The function $S_n (t) = \pi \left( \frac{3}{2} - {frac} \left( \frac{\vartheta(t)}{\pi} \right) + \left( \lfloor \frac{t \ln \left( \frac{t}{2 \pi e}\right)}{2 \pi} + \frac{7}{8} \rfloor - n \right) \right)$ is conjectured to be equal to $S (t_n)_{} = \arg \zeta \left( \frac{1}{2} + i t_n \right)$ when $t=t_n$ is the imaginary part of the n-th zero of $\zeta$ on the critical line. If $S(t_n)=S_n(t_n)$ then the exact transcendental equation for the Riemann zeros has a solution for each positive integer $n$ which proves that Riemann's hypothesis is true since the counting function for zeros on the critical line is equal to the counting function for zeros on the critical strip if the transcendental equation has a solution for each $n$.

Summary

We haven't generated a summary for this paper yet.