Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abductive, Causal, and Counterfactual Conditionals Under Incomplete Probabilistic Knowledge (1703.03254v2)

Published 9 Mar 2017 in cs.AI and math.PR

Abstract: We study abductive, causal, and non-causal conditionals in indicative and counterfactual formulations using probabilistic truth table tasks under incomplete probabilistic knowledge (N = 80). We frame the task as a probability-logical inference problem. The most frequently observed response type across all conditions was a class of conditional event interpretations of conditionals; it was followed by conjunction interpretations. An interesting minority of participants neglected some of the relevant imprecision involved in the premises when inferring lower or upper probability bounds on the target conditional/counterfactual ("halfway responses"). We discuss the results in the light of coherence-based probability logic and the new paradigm psychology of reasoning.

Citations (9)

Summary

We haven't generated a summary for this paper yet.