Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Profile Estimation for Partial Functional Partially Linear Single-Index Model (1703.02736v1)

Published 8 Mar 2017 in math.ST, stat.ME, and stat.TH

Abstract: This paper studies a \textit{partial functional partially linear single-index model} that consists of a functional linear component as well as a linear single-index component. This model generalizes many well-known existing models and is suitable for more complicated data structures. However, its estimation inherits the difficulties and complexities from both components and makes it a challenging problem, which calls for new methodology. We propose a novel profile B-spline method to estimate the parameters by approximating the unknown nonparametric link function in the single-index component part with B-spline, while the linear slope function in the functional component part is estimated by the functional principal component basis. The consistency and asymptotic normality of the parametric estimators are derived, and the global convergence of the proposed estimator of the linear slope function is also established. More excitingly, the latter convergence is optimal in the minimax sense. A two-stage procedure is implemented to estimate the nonparametric link function, and the resulting estimator possesses the optimal global rate of convergence. Furthermore, the convergence rate of the mean squared prediction error for a predictor is also obtained. Empirical properties of the proposed procedures are studied through Monte Carlo simulations. A real data example is also analyzed to illustrate the power and flexibility of the proposed methodology.

Summary

We haven't generated a summary for this paper yet.