Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact MAP Inference by Avoiding Fractional Vertices (1703.02689v1)

Published 8 Mar 2017 in stat.ML, cs.DS, cs.IT, cs.LG, and math.IT

Abstract: Given a graphical model, one essential problem is MAP inference, that is, finding the most likely configuration of states according to the model. Although this problem is NP-hard, large instances can be solved in practice. A major open question is to explain why this is true. We give a natural condition under which we can provably perform MAP inference in polynomial time. We require that the number of fractional vertices in the LP relaxation exceeding the optimal solution is bounded by a polynomial in the problem size. This resolves an open question by Dimakis, Gohari, and Wainwright. In contrast, for general LP relaxations of integer programs, known techniques can only handle a constant number of fractional vertices whose value exceeds the optimal solution. We experimentally verify this condition and demonstrate how efficient various integer programming methods are at removing fractional solutions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.