Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constellation Queries over Big Data (1703.02638v1)

Published 7 Mar 2017 in cs.DB

Abstract: A geometrical pattern is a set of points with all pairwise distances (or, more generally, relative distances) specified. Finding matches to such patterns has applications to spatial data in seismic, astronomical, and transportation contexts. For example, a particularly interesting geometric pattern in astronomy is the Einstein cross, which is an astronomical phenomenon in which a single quasar is observed as four distinct sky objects (due to gravitational lensing) when captured by earth telescopes. Finding such crosses, as well as other geometric patterns, is a challenging problem as the potential number of sets of elements that compose shapes is exponentially large in the size of the dataset and the pattern. In this paper, we denote geometric patterns as constellation queries and propose algorithms to find them in large data applications. Our methods combine quadtrees, matrix multiplication, and unindexed join processing to discover sets of points that match a geometric pattern within some additive factor on the pairwise distances. Our distributed experiments show that the choice of composition algorithm (matrix multiplication or nested loops) depends on the freedom introduced in the query geometry through the distance additive factor. Three clearly identified blocks of threshold values guide the choice of the best composition algorithm. Finally, solving the problem for relative distances requires a novel continuous-to-discrete transformation. To the best of our knowledge this paper is the first to investigate constellation queries at scale.

Citations (6)

Summary

We haven't generated a summary for this paper yet.