2000 character limit reached
Random CNFs are Hard for Cutting Planes
Published 7 Mar 2017 in cs.CC | (1703.02469v1)
Abstract: The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for satisfiability algorithms, and average-case hardness over this distribution has also been linked to hardness of approximation via Feige's hypothesis. We prove that any Cutting Planes refutation for random k-SAT requires exponential size, for k that is logarithmic in the number of variables, in the (interesting) regime where the number of clauses guarantees that the formula is unsatisfiable with high probability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.