Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonsymmetric Macdonald polynomials and a refinement of Kostka-Foulkes polynomials (1703.02466v2)

Published 7 Mar 2017 in math.CO and math.RT

Abstract: We study the specialization of the type A nonsymmetric Macdonald polynomials at $t=0$ based on the combinatorial formula of Haglund, Haiman, and Loehr. We prove that this specialization expands nonnegatively into the fundamental slide polynomials, introduced by the author and Searles. Using this and weak dual equivalence, we prove combinatorially that this specialization is a positive graded sum of Demazure characters. We use stability results for fundamental slide polynomials to show that this specialization stabilizes and to show that the Demazure character coefficients give a refinement of the Kostka--Foulkes polynomials.

Summary

We haven't generated a summary for this paper yet.