Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coefficients of univalent harmonic mappings (1703.02371v1)

Published 7 Mar 2017 in math.CV

Abstract: Let $\mathcal{S}H0$ denote the class of all functions $f(z)=h(z)+\overline{g(z)}=z+\sum\infty{n=2} a_nzn +\overline{\sum\infty_{n=2} b_nzn}$ that are sense-preserving, harmonic and univalent in the open unit disk $|z|<1$. The coefficient conjecture for $\mathcal{S}_H0$ is still \emph{open} even for $|a_2|$. The aim of this paper is to show that if $f=h+\overline{g} \in \mathcal{S}0_H$ then $ |a_n| < 5.24 \times 10{-6} n{17}$ and $|b_n| < 2.32 \times 10{-7}n{17}$ for all $n \geq 3$. Making use of these coefficient estimates, we also obtain radius of univalence of sections of univalent harmonic mappings.

Summary

We haven't generated a summary for this paper yet.