Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concentration Bounds for High Sensitivity Functions Through Differential Privacy (1703.01970v1)

Published 6 Mar 2017 in cs.LG

Abstract: A new line of work [Dwork et al. STOC 2015], [Hardt and ULLMan FOCS 2014], [Steinke and ULLMan COLT 2015], [Bassily et al. STOC 2016] demonstrates how differential privacy [Dwork et al. TCC 2006] can be used as a mathematical tool for guaranteeing generalization in adaptive data analysis. Specifically, if a differentially private analysis is applied on a sample S of i.i.d. examples to select a low-sensitivity function f, then w.h.p. f(S) is close to its expectation, although f is being chosen based on the data. Very recently, Steinke and ULLMan observed that these generalization guarantees can be used for proving concentration bounds in the non-adaptive setting, where the low-sensitivity function is fixed beforehand. In particular, they obtain alternative proofs for classical concentration bounds for low-sensitivity functions, such as the Chernoff bound and McDiarmid's Inequality. In this work, we set out to examine the situation for functions with high-sensitivity, for which differential privacy does not imply generalization guarantees under adaptive analysis. We show that differential privacy can be used to prove concentration bounds for such functions in the non-adaptive setting.

Citations (10)

Summary

We haven't generated a summary for this paper yet.