Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted empirical likelihood for quantile regression with nonignorable missing covariates (1703.01866v2)

Published 6 Mar 2017 in stat.ME

Abstract: In this paper, we propose an empirical likelihood-based weighted estimator of regression parameter in quantile regression model with nonignorable missing covariates. The proposed estimator is computationally simple and achieves semiparametric efficiency if the probability of missingness on the fully observed variables is correctly specified. The efficiency gain of the proposed estimator over the complete-case-analysis estimator is quantified theoretically and illustrated via simulation and a real data application.

Summary

We haven't generated a summary for this paper yet.