A Metrizable Topology on the Contracting Boundary of a Group
Abstract: The 'contracting boundary' of a proper geodesic metric space consists of equivalence classes of geodesic rays that behave like rays in a hyperbolic space. We introduce a geometrically relevant, quasi-isometry invariant topology on the contracting boundary. When the space is the Cayley graph of a finitely generated group we show that our new topology is metrizable.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.