2000 character limit reached
Idempotents in triangulated monoidal categories (1703.01001v1)
Published 3 Mar 2017 in math.CT
Abstract: In these notes we develop some basic theory of idempotents in monoidal categories. We introduce and study the notion of a pair of complementary idempotents in a triangulated monoidal category, as well as more general idempotent decompositions of identity. If $\mathbf{E}$ is a categorical idempotent then $\operatorname{End}(\mathbf{E})$ is a graded commutative algebra. The same is true of $\operatorname{Hom}(\mathbf{E},\mathbf{E}c[1])$ under certain circumstances, where $\mathbf{E}c$ is the complement. These generalize the notions of cohomology and Tate cohomology of a finite dimensional Hopf algebra, respectively.