2000 character limit reached
Global well-posedness for a $L^2$-critical nonlinear higher-order Schrödinger equation (1703.00903v3)
Published 2 Mar 2017 in math.AP
Abstract: We prove the global well-posedness for a $L2$-critical defocusing cubic higher-order Schr\"odinger equation, namely [ i\partial_t u + \Lambdak u = -|u|2 u, ] where $\Lambda=\sqrt{-\Delta}$ and $k\geq 3, k \in \mathbb{Z}$ in $\mathbb{R}k$ with initial data $u_0 \in H\gamma, \gamma>\gamma(k):=\frac{k(4k-1)}{14k-3}$.