Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A sharp Trudinger-Moser type inequality involving $L^{n}$ norm in the entire space $\mathbb{R}^{n}$ (1703.00901v1)

Published 2 Mar 2017 in math.AP

Abstract: Let $W{1,n} ( \mathbb{R}{n} $ be the standard Sobolev space and $\left\Vert \cdot\right\Vert {n}$ be the $L{n}$ norm on $\mathbb{R}n$. We establish a sharp form of the following Trudinger-Moser inequality involving the $L{n}$ norm [ \underset{\left\Vert u\right\Vert _{W{1,n}\left(\mathbb{R} {n}\right) }=1}{\sup}\int{ \mathbb{R}{n}}\Phi\left( \alpha_{n}\left\vert u\right\vert {\frac{n}{n-1}}\left( 1+\alpha\left\Vert u\right\Vert {n}{n}\right) {\frac{1}{n-1}}\right) dx<+\infty ]in the entire space $\mathbb{R}n$ for any $0\leq\alpha<1$, where $\Phi\left( t\right) =e{t}-\underset{j=0}{\overset{n-2}{\sum}}% \frac{t{j}}{j!}$, $\alpha{n}=n\omega_{n-1}{\frac{1}{n-1}}$ and $\omega_{n-1}$ is the $n-1$ dimensional surface measure of the unit ball in $\mathbb{R}n$. We also show that the above supremum is infinity for all $\alpha\geq1$. Moreover, we prove the supremum is attained, namely, there exists a maximizer for the above supremum when $\alpha>0$ is sufficiently small. The proof is based on the method of blow-up analysis of the nonlinear Euler-Lagrange equations of the Trudinger-Moser functionals. Our result sharpens the recent work \cite{J. M. do1} in which they show that the above inequality holds in a weaker form when $\Phi(t)$ is replaced by a strictly smaller $\Phi*(t)=e{t}-\underset{j=0}{\overset{n-1}{\sum}}% \frac{t{j}}{j!}$. (Note that $\Phi(t)=\Phi*(t)+\frac{t{n-1}}{(n-1)!}$).

Summary

We haven't generated a summary for this paper yet.