Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decay Estimates and Strichartz Estimates of Fourth-order Schrödinger Operator (1703.00295v2)

Published 1 Mar 2017 in math.AP

Abstract: We study time decay estimates of the fourth-order Schr\"{o}dinger operator $H=(-\Delta){2}+V(x)$ in $\mathbb{R}{d}$ for $d=3$ and $d\geq5$. We analyze the low energy and high energy behaviour of resolvent $R(H; z)$, and then derive the Jensen-Kato dispersion decay estimate and local decay estimate for $e{-itH}P_{ac}$ under suitable spectrum assumptions of $H$. Based on Jensen-Kato decay estimate and local decay estimate, we obtain the $L1\rightarrow L{\infty}$ estimate of $e{-itH}P_{ac}$ in $3$-dimension by Ginibre argument, and also establish the endpoint global Strichartz estimates of $e{-itH}P_{ac}$ for $d\geq5$. Furthermore, using the local decay estimate and the Georgescu-Larenas-Soffer conjugate operator method, we prove the Jensen-Kato type decay estimates for some functions of $H$.

Summary

We haven't generated a summary for this paper yet.