2000 character limit reached
Sharp off-diagonal weighted norm estimates for the Bergman projection (1703.00275v4)
Published 1 Mar 2017 in math.CA and math.CV
Abstract: We prove that for $1<p\le q<\infty$, $qp\geq {p'}2$ or $p'q'\geq q2$, $\frac{1}{p}+\frac{1}{p'}=\frac{1}{q}+\frac{1}{q'}=1$, $$|\omega P_\alpha(f)|{Lp(\mathcal{H},y{\alpha+(2+\alpha)(\frac{q}{p}-1)}dxdy)}\le C{p,q,\alpha}[\omega]{B{p,q,\alpha}}{(\frac{1}{p'}+\frac{1}{q})\max{1,\frac{p'}{q}}}|\omega f|{Lp(\mathcal{H},y{\alpha}dxdy)}$$ where $P\alpha$ is the weighted Bergman projection of the upper-half plane $\mathcal{H}$, and $$[\omega]{B{p,q,\alpha}}:=\sup_{I\subset \mathbb{R}}\left(\frac{1}{|I|{2+\alpha}}\int_{Q_I}\omega{q}dV_\alpha\right)\left(\frac{1}{|I|{2+\alpha}}\int_{Q_I}\omega{-p'}dV_\alpha\right){\frac{q}{p'}},$$ with $Q_I={z=x+iy\in \mathbb{C}: x\in I, 0<y<|I|}$.