Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embarrassingly Parallel Inference for Gaussian Processes (1702.08420v9)

Published 27 Feb 2017 in stat.ML

Abstract: Training Gaussian process-based models typically involves an $ O(N3)$ computational bottleneck due to inverting the covariance matrix. Popular methods for overcoming this matrix inversion problem cannot adequately model all types of latent functions, and are often not parallelizable. However, judicious choice of model structure can ameliorate this problem. A mixture-of-experts model that uses a mixture of $K$ Gaussian processes offers modeling flexibility and opportunities for scalable inference. Our embarrassingly parallel algorithm combines low-dimensional matrix inversions with importance sampling to yield a flexible, scalable mixture-of-experts model that offers comparable performance to Gaussian process regression at a much lower computational cost.

Citations (22)

Summary

We haven't generated a summary for this paper yet.