Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining the $k$-CNF and XOR Phase-Transitions (1702.08392v1)

Published 27 Feb 2017 in cs.DM

Abstract: The runtime performance of modern SAT solvers on random $k$-CNF formulas is deeply connected with the 'phase-transition' phenomenon seen empirically in the satisfiability of random $k$-CNF formulas. Recent universal hashing-based approaches to sampling and counting crucially depend on the runtime performance of SAT solvers on formulas expressed as the conjunction of both $k$-CNF and XOR constraints (known as $k$-CNF-XOR formulas), but the behavior of random $k$-CNF-XOR formulas is unexplored in prior work. In this paper, we present the first study of the satisfiability of random $k$-CNF-XOR formulas. We show empirical evidence of a surprising phase-transition that follows a linear trade-off between $k$-CNF and XOR constraints. Furthermore, we prove that a phase-transition for $k$-CNF-XOR formulas exists for $k = 2$ and (when the number of $k$-CNF constraints is small) for $k > 2$.

Citations (14)

Summary

We haven't generated a summary for this paper yet.