Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Runge--Kutta convolution coercivity and its use for time-dependent boundary integral equations (1702.08385v1)

Published 27 Feb 2017 in math.NA

Abstract: A coercivity property of temporal convolution operators is an essential tool in the analysis of time-dependent boundary integral equations and their space and time discretisations. It is known that this coercivity property is inherited by convolution quadrature time discretisation based on A-stable multistep methods, which are of order at most two. Here we study the question as to which Runge--Kutta-based convolution quadrature methods inherit the convolution coercivity property. It is shown that this holds without any restriction for the third-order Radau IIA method, and on permitting a shift in the Laplace domain variable, this holds for all algebraically stable Runge--Kutta methods and hence for methods of arbitrary order. As an illustration, the discrete convolution coercivity is used to analyse the stability and convergence properties of the time discretisation of a non-linear boundary integral equation that originates from a non-linear scattering problem for the linear wave equation. Numerical experiments illustrate the error behaviour of the Runge--Kutta convolution quadrature time discretisation.

Summary

We haven't generated a summary for this paper yet.