Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ratio Utility and Cost Analysis for Privacy Preserving Subspace Projection (1702.07976v1)

Published 26 Feb 2017 in stat.ML and cs.LG

Abstract: With a rapidly increasing number of devices connected to the internet, big data has been applied to various domains of human life. Nevertheless, it has also opened new venues for breaching users' privacy. Hence it is highly required to develop techniques that enable data owners to privatize their data while keeping it useful for intended applications. Existing methods, however, do not offer enough flexibility for controlling the utility-privacy trade-off and may incur unfavorable results when privacy requirements are high. To tackle these drawbacks, we propose a compressive-privacy based method, namely RUCA (Ratio Utility and Cost Analysis), which can not only maximize performance for a privacy-insensitive classification task but also minimize the ability of any classifier to infer private information from the data. Experimental results on Census and Human Activity Recognition data sets demonstrate that RUCA significantly outperforms existing privacy preserving data projection techniques for a wide range of privacy pricings.

Citations (20)

Summary

We haven't generated a summary for this paper yet.