Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Online Bandit Multiclass Learning with $\tilde{O}(\sqrt{T})$ Regret (1702.07958v3)

Published 25 Feb 2017 in cs.LG and stat.ML

Abstract: We present an efficient second-order algorithm with $\tilde{O}(\frac{1}{\eta}\sqrt{T})$ regret for the bandit online multiclass problem. The regret bound holds simultaneously with respect to a family of loss functions parameterized by $\eta$, for a range of $\eta$ restricted by the norm of the competitor. The family of loss functions ranges from hinge loss ($\eta=0$) to squared hinge loss ($\eta=1$). This provides a solution to the open problem of (J. Abernethy and A. Rakhlin. An efficient bandit algorithm for $\sqrt{T}$-regret in online multiclass prediction? In COLT, 2009). We test our algorithm experimentally, showing that it also performs favorably against earlier algorithms.

Citations (19)

Summary

We haven't generated a summary for this paper yet.