Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nonparanormal Information Estimation

Published 24 Feb 2017 in math.ST, cs.IT, math.IT, stat.ML, and stat.TH | (1702.07803v1)

Abstract: We study the problem of using i.i.d. samples from an unknown multivariate probability distribution $p$ to estimate the mutual information of $p$. This problem has recently received attention in two settings: (1) where $p$ is assumed to be Gaussian and (2) where $p$ is assumed only to lie in a large nonparametric smoothness class. Estimators proposed for the Gaussian case converge in high dimensions when the Gaussian assumption holds, but are brittle, failing dramatically when $p$ is not Gaussian. Estimators proposed for the nonparametric case fail to converge with realistic sample sizes except in very low dimensions. As a result, there is a lack of robust mutual information estimators for many realistic data. To address this, we propose estimators for mutual information when $p$ is assumed to be a nonparanormal (a.k.a., Gaussian copula) model, a semiparametric compromise between Gaussian and nonparametric extremes. Using theoretical bounds and experiments, we show these estimators strike a practical balance between robustness and scaling with dimensionality.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.